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NONLINEAR FEEDBACK SOLUTION
FOR MINIMUM-TIME INJECTION INTO CIRCULAR ORBIT

WITH CONSTANT THRUST ACCELERATION MAGNITUDE
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David H. Winfield and Arthur E. Bryson, Jr.
Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

ABSTRACT

The instantaneous thrust-direction for a rocket vehicle to perform a
minimum-time injection into a circular orbit of prescribed radius is determined
as a function of instantaneous distance, and radial and tangential velocity
relative to the attracting center. A nonlinear feedback control law for the
instantaneous thrust-direction is derived which is based on the approximation
that the gravity vector and the vehicle thrust acceleration magnitude during the
maneuver are to be constant at values intermediate between their present and
expected terminal values. The control law is shown to depend only on two
dimensionless functions of the three relevant state variables, so that the
solution is, in effect, expressed in a reduced state space of two dimensions.
The optimal thrust-direction is defined analytically and graphically as a
function on the reduced state space.

The open-loop solution to the minimum-time transfer problem is the

well-known linear tangent law. The new contributions here are (1) showing
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that the solution depends on only two dimensionless functions of state and (2)
putting the solution in the form of a feedback law which depends on these two
functions.

For a maneuver spanning a considerable arc around the attracting
center (up to about 40°), the solution may be used directly as a suboptimal
control or to give starting values for an iterative solution of the true inverse-
square gravity problem. More appropriately, it may be used to determine
terminal thrusts to circularize a near-circular orbit near the desired altitude

or for intermittent thrusts to maintain a satellite in a desired circular orbit.

INTRODUCTION

The injection of a rocket vehicle into a circular orbit of radius r in
a gravity field Jriz involves simultaneously nulling the radial velocity and
achieving tangential velocity U = E at radius r . A feedback control to
achieve these conditions may be derived by assuming that at each instant (1)
the gravity vector is to be constant in the region of the remaining maneuver
at some value intermediate between its value at the present position and its
value at the expected point of injection, and (2) the magnitude of thrust
acceleration is to be constant at a value intermediate between its present
value and its value at the expected time of injection. The assumption of |
constant gravity is reasonably good for nearly circular orbits, if the maneuver
time is short enough that the angular distance traveled around the attracting
center is less than 30° to 40° [Ref.1]. With the added assumption that the
vehicle position and velocity lie in the plane of the desired orbit, the terminal

phase of the injection maneuver may be approximated by the planar problem
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of choosing thrust direction for minimum-time transfer to specified altitude
and horizontal velocity, using a constant magnitude thrust acceleration, in a
gravity field constant in direction and magnitude.

Let Vo1 By Voo to, po and h, U, 0, te, {Sf be initial and final
values of altitude, horizontal and vertical velocity, time, and thrust direction
angle above the horizontal, Let a and g be the magnitudes of vehicle thrust
acceleration and gravity. The present optimal thrust direction N will be

related to present state Vo Y Vo through the equations:

2a(h-y )
'ﬂ=f1(ﬁosﬁf;'§) where n = ; 5
(U-w)” + v,
o
- . B v
tany = H(By Bgig) tany = U?'u
)

The feedback law will involve computing m and tany from current state and
desired h and U, inverting the functions 3] and f2 to obtain @ _, B, and

using 50 for control. Now BO will depend only on the two dimensionless

quantities rn , y , instead of on the three physical quantities Vo Ugr Vg -
Similarly, B £ and the normalized time-to-injection
a(t.-t,)
- £ °° . 4
s — = £,(p,, B £)
o
will depend only on 11 and y . Thus, in the Yo % Vo state space, a

parabola specified by the two parameters n , y will be a locus of constant
[30 , constant ﬁf , and constant T . The solution to a problem stated in the

three-space Vo' Yo Yo will be expressed in the two-space 17 , Y



MINIMUM-TIME TRANSFER
IN THE REDUCED STATE SPACE 1, vy
Take an earth-centered inertial frame with vertical along the present
value of the intermediate gravity vector E Let x, vy, u, v denote horizontal
and vertical components of position and velocity at time t; let B denote thrust
elevation above the horizontal; and let subscripts o and f denote initial and

final values of these quantities, as shown in Fig. 1, The motion satisfies

X = u (1)
¥y o= v (2)
@ = acosp (3)
v = asinp -g (4)

where a and g are magnitudes of the intermediate thrust acceleration and
gravity defined in Appendix A.
The optimal thrust direction B is chosen to minimize the Hamiltonian

3c=1+)\xu+)\yv+)\uaco.sﬁ + A, (asinp -g) (5)

for values of the costate vector satisfying the Euler-Lagrange equations

Ny = N (6)
N -A (7)
Xx = 0 ' (8)
A, =0 (9)

and values of state satisfying (1) - (4). Integrating (6) - (9),

)\X = constant (10)

N
y

constant (11)



>
L]

a xuo- N (t-t) (12)

>
1t

‘ xvo-xy(t-to) (13)

For injection into a horizontal trajectory at altitude h with velocity U, we

prescribe terminal conditions

ye = h (14)
u, = U (15)
ve = 0 (16)

Since the downrange distance x, at injection is free, A 0, so )‘u = constant.

f

The thrust direction which minimizes 3 is given by

A A, = A (t-t )
v v, y o
tanp = O x (17)
u u
or
ta.nﬁf = tan Bo-c(tf—to) (18)
where
A
Vo
tanﬁo = -Kl— (19)
by
c = KX (20)
u

The state history for minimum-time injection into a horizontal
trajectory starting from rest and in the absence of gravity is given in Chapter
2 of Reference 2 . The solution is there obtained by integrating (1) - (4) with

B as independent variable, using the relation



a8 _ 2
dt ccos B

(21)
from (17) and (20) to change from t to B as independent variable. Adding
terms due to initial velocity and gravity yields

tanfso + sec [30
n ta.nf3f + sec pf * Yo (22)

ue =EI

v = %(secﬁo-secpf)-g(tf-to)+vo (23)

v © é [(ta.nﬁo-tanﬁf)sec[30-(secp}o-secfif)ta.n(if -

(24)

tan [30+ sec ﬁo 1

2
lntanﬁf+sec|3f - ettty ) v (-t )y

Imposing terminal conditions (14) - (16) on (22) - (24) yields three eéuations
which, together with (18), constitute a set of four equations in unknowns
By » Bf, tf-to and c .

Following a procedure suggested in Reference 2, we obtain a pair of

equations defining Bo and B¢ implicitly as functions of the dimensionless

variables
Za(h-yo)
n = — 5 (25)
Va + ( U-uo)
Yo
tany = T (26)

(o]

; - . 8 - . £
The functions n = fl(ﬁo, Bf’a) and tany = fz(ﬁo, ﬁf’a) are stated

below and are derived in Appendix B.
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-1
v * (U-u,)”
n = Za,(h-yo)+ Za(h-yo) (27)
where
Za(h-yo) 1
= [A]-‘g(tan -
VOZ E-(tanﬁo-tanﬁf) -(secﬁo—secﬁf)]z{ a (30
(28)
, 2(tanpB -tanp,)
ta.nﬁ;f)2}+-g o £
a(tanﬁo-tanﬁf)-(secﬁo-secﬁf)
2a(h-vy )
02 = 1 {[A]+g(tanﬁ -tanﬁf)z—
(U-u_ ) tanp +secf a ©
o in o o
tanpB .+ secf
£ £ (29)
Z(tanﬁo-tanﬁf)(secﬁo-secﬁf)}
and

g(tanﬁo-tanﬁf) - ( sec ﬁo-secﬁf)

tany = Tanp,+secp_ (30)

in -
tanﬁf+ sec Bf

The symbol [A] represents the term in square brackets in (24). The normal-
ized time-to-injection is
a.(tf—to) tanp -tanf,

T = - = -g (31)
o a(tan[io-tanﬁf)-(secﬁo-secﬁf)

Note that n and y determine ﬁo and ﬁf through (27) and (30), and
Bo and Bf determine T through (31). Thus, the optimum thrust direction

angle above the horizontal, [30 , is given as a function of n and y . This
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is the feedback law for minimum-time injection into a horizontal trajectory for
a vehicle with constant thrust acceleration magnitude in a gravity field constant
in direction.and magnitude.

For the case % = 3, Fig. 2 shows minimum-time paths and contours
of constant thrust-direction angle on an m versus vy plot. Figure 3 shows
the same minimum-time paths as Fig. 2, with the paths intersecting contours
(isochrones) of constant dimensionless time-to-injection, again for —Zi = 3.

To illustrate the use of these charts, suppose that at the radius of the
desired orbit the initial altitude-to-be-gained, h - Vg horizontal velocity-to-
be-gained, U - u and vertical velocity-to-be-lost, v, » map to point "t"

(y = 37°, % = .35) on Fig. 2. The optimal thrust direction at "t" is
B, = 809, and the extremal path is that labeled B¢ = -80°. Following this
path, ﬁo is reduced to 40° at "y" , to 0° at nxn , and finally to

{30 =By = -80° at the injection point "h¥ . The values of dimensionless
time-to-injection along this path may be read from Fig. 3.

The heavy line labeled "locus of fixed-point extremals" on Fig. 2 and
"terminal manifold" on Fig. 3 is the locus on which all extremals terminate.

It is the locus for which extremal trajectories are fixed points in (n ,y ) space,
and the thrust direction is constant at a value such that the vector sum of thrust
and gravity is along the velocity-to-be-gained vector. Details of the mapping

from ([50 ) Bf) to (n, y) are discussed in Appendix C.



CONCLUSION

~-A nonlinear feedback law has been obtained for controlling thrust

direction to produce minimum-time injection of a spacecraft into circular

orbit. This law depends only on two dimensionless quantities which can be

determined from three physical quantities: (1) distance from the attracting

center, (2) radial velocity, and (3) tangential velocity.
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APPENDIX A

Intermediate Value of Gravity Vector and Thrust Acceleration Magnitude

We choose the magnitude of the intermediate gravity vector g so that
the increment in potential energy corresponding to ascent from initial radial

distance T to final radial distance Te in the true sz- gravity field will be the
r :

same as is obtained by ascent through height re -1, in a constant gravity

field g .

(rf-ro>g=$f- - (-4 (A-1)

g = —+t— (A-2)

o't
This is an arbitrary but reasonable choice of g.

We choose the direction of the intermediate gravity vector and the
magnitude of the intermediate thrust acceleration by the following iteration:

1. Let the first estimate of intermediate g have magnitude (A-2)
and direction downward along the present vertical. With the xy coordinate
frame so defined, evaluate m , y and solve for [30 s ﬁf by a Newton-Raphéon
iteration starting from [50 » By values stored in an mn, y grid for nominal 2,

Compute t, -t o from (31) and c from (18). Compute intermediate a,

f

assuming constant thrust T, and mass flow rate m .

- X 1 1 ]
a = 3 [m(to) + m(to)-(tf-to)rh:] (A-3)

2. Compute

tan Bo +secp

- 2 _ - .
X -X = (sec[?)o sec (3f tan . in tanp .7 secp ) + U‘o(tf to)
c f f (A-4)

and estimate the angle to injection

-10 -
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X, =X
f fo}

‘ro+rf
2

The formula for X, -x  is derived in Reference 2, Chapter 2.

(A-5)

3. Let the next estimate of the direction of g be halfway between the
present vertical and the vertical at the estimated point of injection, i.e., bi-
secting the angle © .

4. In the new xy frame so defined, evaluate n , y , and repeat steps
one through four.

The need for care in selecting intermediate g and a can be shown by
a simplified problem. Suppose that gravity were truly constant in direction and
magnitude at value _g‘ , and thrust acceleration were constant at a , and that
control were based on the correct direction of g , but incorrect magnitudes
g and 4. Further suppose that the initial horizontal velocity were the desired
value, so that the problem is the purely vertical one of nulling vertical velocity
at the desired altitude.

The control consists of switching curves. With perfect knowledge of
a and g, only one switch is required. But with imperfect knowledge, the
vehicle under true net upward acceleration a-g or downward acceleration
a + g cannot follow the switching curves (based on nominal a2 -g or 4 + g) to
the desired state. Many switches are required, the number increasing with the
deviation of (3, g) from (a, g), and decreasing with the width of a tolerance

zone along the switching curve.



212 -

If the vehicle must reorient to thrust, this is expensive in attitude
control, and interposes periods during which no thrust can be applied while the
vehicle is rotated through 180° . Even if no reorientation is required, time is
wasted while state, following parabolas based on actual a - g and a + g,
departs and returns in short arcs from the switching curves based on 2 - g

A
and €+g.



APPENDIX B

Initial and Final Thrust Direction

Expressed Implicitly As Functions of n and vy

The equations

tanf}  + sec B

- a -
U-u, = cﬂntanﬁf+secﬁf (B-1)
- = i(s secf3.) (B-2)
Vo T clsech, - Ps B
a
h - Vo = Zcz I:(tanﬁo - tanﬁf)sec [30 -{ sec (30 - sec [3f)ta.n(3f -
(B-3)
tanp + secf
o) o 1 2
zntanﬁf+ secﬁf] -z8(t - to) + Vo(tf - to)
tanf3 - tanp
c = o £ (B-4)
t, - ¢t
f o
are to be solved for ﬁo ) {3f st -t and c.
From (B-2) and (B-4), the normalized time-to-injection T is
a.(’cf - t) ) 1 _ tanp -tanfp,
Yo g _ sec [30-sec ﬁf -g(tanﬁo-tanﬁf)—(sec ﬁo—secﬁf)
a tanBo- ’canﬁf
(B-5)
From (B-1) and (B-4)
you - a( tf'to) . tanp_+ secf (B-6)
o tanﬁo -ta,n[':‘uf tanﬁf+ secﬁf
Dividing by vy and using (B-5) and definition (26),
g - - -
tany = Yo _ a(ta'nﬁo tan Faf’) (secBy - sec ﬁf) (B-7)
U—uO , tanﬁo + sec ﬁo

ntanf}f+sec{3f

-13 -
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Substituting (B-4) in (B-3) and multiplying the resulting equation by _Z_az
Vo

2 2
2a(h - t.-t A
a( ZYO) ] a-z( f 0) [ ] > _ig-z-(tf_to)zq.-zi(tf-t ) (B-8)
v v, (tan B, -tanpy) v, Yo °

where [A] is the term in brackets in (24)., Substituting (B-5) in (B-8),

2a(h-y_)
> o = 1 2 {[A]'s(tanﬁo-
v [S(tanp, -tany) - (secp, - secpy)]
(B-9)
2(tanp -tanp.)
tanﬁf)z} + 2 f
%(tanﬁo—tanﬁf) - (secP  -secp,)

Multiplying (B-9) by the square of (B-7),
Za(h-yo ) 1

2
Gou® T mpreen? {[A]+-§(tanﬁo-tanpf) _
£n1;an;3f+sec[3f

(B-10)
Z(tanﬁ»o - tanﬁf) (sec B, - sec Bf)}
Then
VOZ (y- uo)Z -1
" Zhoy) t wmE oy (B-11)
is evaluated from (B-9) and (B-10). The functions f f f, mentioned in

1 72 73
the Introduction are given by (B-11), (B-7), and (B-5), respectively.



APPENDIX C

Extremals, Loci of Constant Control, Isochrones,

and the Terminal Manifold in the Reduced State Space

As present time t, approaches final time te the present thrust
direction 8 approaches the final thrust direction Bg s following the linear
tangent law

tanﬁf = tanﬁo-c(tf—to) _ (C-1)

Thus, in BO , B space (see Fig.4) the extremal (minimum-time) trajectories
are paths ﬁf = constant, terminating on the line ﬁo = Bf , and the loci of
constant control are lines BO = constant. This grid of extremals and constant
control loci is mapped from [30 ) Bf (Fig.4) to n, v (Fig.2) by the relations
n = fl(ﬁO » Bes -E-) and tany = fz(ﬁO » By -g) . A comparison of Figs. 2
and 4 shows that the mapping is topographic, but not conformal. Corresponding
points on the two figures have been labeled with corresponding letters. In cases
where the relation of (30 = constant and Bf = constant curves in Fig. 2 are
obscured by crowding, it is convenient to refer to Fig. 4 to see what portions of
BO ) Bf space are mapped into small regions of n , y space,.

The case ¢ = 0 corresponds to )\Y = 0 (see(20)), i.e., to free
terminal altitude. The extremals for this case are simply fixed points on the
line [30 = Bf . Since all extremals terminate on the line BO = Bf , we refer
to it, and its image in m , y space, as the "terminal manifold."

With terminal altitude free, the constant thrust-direction angle f and
time-to-injection tf - to satisfy
velocity-to-be-gained = (net acceleration) e (tf-to) :

(U - uo)T —zvoj‘ = [acosﬁ’l\ + (asinp - g)'J\] (tf - to) (C-2)

..15_



.16 -

so that
v l-isinﬁ
= =2 = g

tany = T-a - a
o = cos P

g

2 2 2, 2 2 .
vy +(U-u)) = (te-t )" (g" +a - 2agsinp )

To reach the desired altitude under constant thrust,

1 2 .
h =y o+v (te -t )+=5(t, -t ) (asinp -g)

Substituting vy from (C-2),

1 2 .
h—yo = f(tf_to) (g -asinp)

From (C-4) and (C-6),

2a(h -y ) i(l—isinﬁ)
- o - g g
no= 2. (u 2 2
Yo ( ~ Y 1+(i —Zisinﬁ
g g o
From (C-2)
) a(tfuto) ) !
T Yo ) -g-—sinﬁ
a

(C-5)

(C-6)

(C-7)

(C-8)

The terminal manifold represents those trajectories in which only terminal

velocity was constrained, and the desired altitude was reached, by coincidence,

simultaneously with the desired velocity. Equations (C-3), (C-7), and (C-8)

rather than (B-7), (B-11), and (B-5) must be used on the terminal manifold,

since the latter expressions are indeterminate for (30 = Bf .

To compute contours of constant T , it is convenient to introduce

new variables

g = [30+Bf

(C-9)




-17-

5 = B, - By (C-10)

1
T = O (C-11)
‘g-- sin 2
a 3
[of0}:] 3
We define
sinE
5 o,24 2 _g_1
k(5, 3) = 5 " a3 (C-12)
COST

s

so that, for given % contours of constant T are contours of constant k in

(30 , ﬁf space, which can then be mapped to 7 , y space by
- . 2
n - fl ( BO s Bf ’ a)
and

tan y = fz(ﬁo, ﬁf; %)
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